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Abstract. rlive is a recently-proposed SAT-based liveness model check-
ing algorithm that showed remarkable performance compared to other
state-of-the-art approaches, both in absolute terms (solving more prob-
lems overall than other engines on standard benchmark sets) as well as
in relative terms (solving several problems that none of the other engines
could solve). rlive proves or disproves properties of the form FGq, by try-
ing to show that ¬q can be visited only a finite number of times via an
incremental reduction to a sequence of reachability queries. A key factor
in the good performance of rlive is the extraction of “shoals” from the
inductive invariants of the reachability queries to block states that can
reach ¬q a bounded number of times.
In this paper, we generalize rlive to handle infinite-state systems, using
the Verification Modulo Theories paradigm. In contrast to the finite-
state case, liveness cannot be simply reduced to finding a bound on the
number of occurrences of ¬q on paths. We propose therefore a solution
leveraging predicate abstraction and termination techniques based on
well-founded relations. In particular, we show how we can extract shoals
that take into account the well-founded relations. We implemented the
technique on top of the open source VMT engine IC3ia and we experi-
mentally demonstrate how the new extension maintains the performance
advantages (both absolute and relative) of the original rlive, thus signif-
icantly contributing to advancing the state of the art of infinite-state
liveness verification.

1 Introduction

Liveness checking is the problem of proving (or disproving) that a property of the
form FGq holds in a given transition system S. When S |= FGq, all the traces
of S are such that q eventually stabilizes, i.e., it holds indefinitely from a certain
state on (equivalently, ¬q is visited only a finite number of times). Dually, when
S ̸|= FGq, there exists an infinite path π satisfying GF¬q that hits condition
¬q (usually called a fairness condition) an infinite number of times. Liveness
checking is a fundamental enabler for verification, since LTL model checking can
be reduced to liveness checking thanks to standard techniques [17].

In this paper, we tackle the problem of liveness checking for infinite-state sys-
tems. In contrast to the finite-state case, the problem cannot be simply reduced
to the search for lasso-shaped fair paths, as an infinite-state transition system
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may only admit violations that cannot be presented as lasso-shaped paths. Du-
ally, even if the property holds, there may be no upper bound on the number of
times the fairness condition is satisfied along any path.

Our starting point is rlive, a recently-proposed SAT-based liveness checking
algorithm for the finite state case, that demonstrated remarkable performance
compared to other state-of-the-art approaches [47]. The rlive algorithm proves or
disproves properties of the form FGq, by trying to show that ¬q can be visited
only a finite number of times via an incremental reduction to a sequence of
reachability queries. A distinguishing feature of rlive is the extraction of “shoals”
from the inductive invariants of the reachability queries, to block states that can
reach ¬q only a bounded number of times.

We generalize rlive to handle infinite-state systems, using the Verification
Modulo Theories (VMT) paradigm [11]. In contrast to the finite-state case, live-
ness cannot be reduced to finding a bound on the number of occurrences of ¬q
that is global for all the paths. We propose therefore a solution integrating pred-
icate abstraction and termination techniques based on well-founded relations.

At the top level, our new algorithm, which we call rlive-inf, can be seen as
a counterexample-guided abstraction refinement loop (CEGAR) [29] that main-
tains a set of predicates inducing an abstract state space and a set of well-founded
relations. The procedure enumerates abstract lassos, which are candidate coun-
terexample traces containing a repeated abstract state satisfying the fairness
condition ¬q. Well-founded relations are used to avoid discovering candidate
loops that can be proved to be terminating. If an abstract lasso is returned,
rlive-inf attempts to concretize it and, in case of failure, it refines the abstraction
by finding more predicates and/or well-founded relations. A key non-trivial step
in the generalization of rlive to the infinite-state case is the construction of shoals
that take into account the well-founded relations to block states that can reach
¬q a finite but potentially unbounded number of times.

We implemented rlive-inf on top of the open-source VMT engine ic3ia [34],
hence obtaining a fully-symbolic LTL model checker for infinite-state transition
systems. We evaluated our implementation on a wide set of benchmarks from
the literature, and compared it with αL2S [23], the state-of-the-art technique
based on abstract liveness-to-safety, which is also implemented in ic3ia. Our
experimental evaluation clearly demonstrates the value of rlive-inf. First, rlive-
inf solves more benchmarks than αL2S, both safe and unsafe. Second, rlive-inf
is on average significantly faster than αL2S. Interestingly, the two approaches
are quite complementary, in the sense that the virtual best solver is significantly
more effective than both procedures alone.

Structure of the paper. In Section 2 we present some background, and in Section 3
we discuss the liveness checking problem. We present the rlive-inf algorithm in
Section 4, and we prove its correctness in Section 5. In Section 6 we discuss
its limitations, and in Section 7 we compare it to other approaches for liveness
checking. In Section 8 we present our experimental evaluation, and in Section 9
we draw conclusions and present some directions for future work.
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2 Preliminaries

We focus on model checking of infinite state systems described with symbolic
formulas. We work in the setting of SMT [2] to interpret formulas modulo a given
background theory and of VMT [11] to describe states and transitions with SMT
formulas.

A symbolic transition system is defined as S := ⟨X, I, T ⟩ where X is a set of
variables, I(X) is a one-state formula defining the initial condition and T (X,X ′)
is a two-state formula defining the transition relation, where X ′ = {x′ | x ∈ X}
is the set of next-state variables. For a formula ϕ, we denote ϕ′ the formula
obtained by replacing each x ∈ X with its next-state variant x′ ∈ X ′ in ϕ. A
state is an assignment to the variables of X. A finite path π of S is a finite
sequence of states s0, s1 . . . , sn such that s0 |= I and si, s

′
i+1 |= T (and similarly

for an infinite path s0, s1, . . . ). If π is a finite path of the form s0, . . . , sn, we refer
to s0 as πfirst and to sn as πlast. A state is reachable in S if it occurs in a finite
path of S. An infinite path is lasso-shaped if it can be expressed as α ·βω, where
the stem α := s0, s2, . . . , sl and the loop β := sl+1, . . . , sk are finite sequences of
states in S such that s0, . . . , sk is a finite path of S and sk = sl+1.

Invariant Checking The invariant checking problem asks whether a state
property P (X) holds in all reachable states of a system S = ⟨X, I, T ⟩. An
invariant checking procedure check-inv(X, I, T, P ) returns a finite trace π :=
s0, s1, . . . , sn of S where si |= ¬P for some 0 ≤ i ≤ n, or an inductive invari-
ant inv such that inv |= P , I |= inv, and inv ∧ T |= inv′. See [13] for details.
Many techniques exist to perform invariant checking of infinite-state systems,
e.g. [13,37,33,4,43,36,5,38]. In the following, we assume a symbolic transition
system S = ⟨X, I(X), T (X,X ′)⟩ is given.

Predicate Abstraction Predicate abstraction is defined over a set of predi-
cates P = {γ1(X), . . . , γn(X)} [28,15]. For each predicate γi(X) we assume a
corresponding a Boolean variable γ̂i. With an abuse of notation, we may also
denote {γ̂1, . . . , γ̂n} with P. We relate each predicate to its abstracted Boolean
variable with the following formula:

PrDef(X,P) =
∧
i

γ̂i ↔ γi(X)

The predicate abstraction of S, denoted Ŝ := ⟨X̂, Î, T̂ ⟩, is defined as:

X̂ := P Î := ∃X.(I(X) ∧PrDef(X,P))

T̂ := ∃X.(T (X,X ′) ∧PrDef(X,P) ∧PrDef(X ′,P′))

Given a state s, its abstraction ŝ with respect to P, referred to as P-abstraction,
is defined as {γ̂i | s |= γi} ∪ {¬γ̂j | s ̸|= γj}. Given an abstract state ŝ, its set
of corresponding concrete states is denoted as JŝK: these are all the states that
satisfy the formula

∧
γ̂i∈ŝ γi ∧

∧
¬γ̂j∈ŝ ¬γj .
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Disjunctive Well-founded Relations A well-founded relation ρ ⊆ Q × Q
is a binary relation such that every non-empty subset U ⊆ Q has a minimal
element with respect to ρ, that is, there is some m ∈ U such that no u ∈ U
satisfies ρ(u,m). A disjunctive well-founded relation is defined as a finite union
of well-founded relations.

Termination of a program can be proven by finding a well-founded relation
for the program’s states. In order to reason about general transition relations
(including those with disjunctions) we use disjunctive well-founded relations.
One way to obtain a well-founded relation for a program with non-disjunctive
transition relation T is via a ranking function r(X) that assigns a natural num-
ber to each program state such that the relation {(r(s0), r(s1)) | s0, s′1 |=
T} is well-founded. Various techniques exist to synthesize ranking functions,
e.g. [40,30,22,45].

3 Liveness Checking

The problem of model checking general LTL properties [17] can be reduced,
following standard techniques (e.g., [46,17,7]), to the problem of model checking
a property of the form FGq, where q is a state formula over X. The problem of
checking whether FGq holds in S, denoted S |= FGq, amounts to checking if q
eventually stabilizes on every path of S, i.e., for all π ∈ S.∃i.∀j ≥ i.π[j] |= q.
The dual problem is checking the existence of an infinite path π ∈ S satisfying
GF¬q, that is, visits ¬q an infinite number of times. ¬q may be referred to as
the fairness condition, and π as a fair path. In the following, we assume the FGq
property as given. Several algorithms for liveness checking have been proposed
in the past, including Liveness-to-safety (L2S) [3], FAIR [8], k-liveness [16], k-
FAIR [35], rlive [47]. We provide details on the algorithms most relevant to our
contributions here.

rlive The rlive algorithm [47] performs a depth-first search for a loop violating
FGq, i.e., a fair path π satisfying GF¬q, hitting ¬q an infinite number of times.
rlive (see Algorithm 1) incrementally performs a series of invariant model check-
ing queries. If the algorithm determines that ¬q is unreachable from the current
state in the search, rlive adds the newly-found inductive invariant to a set of
states known as shoals, otherwise it reaches another state s that satisfies ¬q.
A shoal is a set of states that can only reach ¬q a finite number of times. If s
is already on the search stack B, then rlive has found a loop satisfying GF¬q,
so the algorithm terminates with Unsafe. Otherwise rlive adds this state to the
stack B and continues the search. The algorithm terminates with Safe once it
shows that the initial set of states is contained in the shoals.

Liveness to Safety When S is finite, S ⊭ FGq if and only if there exists a
lasso-shaped path α · βω in S where some state b ∈ β is such that b |= ¬q. The
L2S transformation [3] is an approach for reducing the problem of checking for
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Algorithm 1: rlive algorithm for finite-state systems for the property
FGq with variable set X, initial condition I, and transition relation T .

1 Procedure rlive(X, I, T , FGq) begin
2 C := ⊥
3 B := empty stack of states
4 while check-inv(X, I, T ∧ (¬C ∧ ¬C′), T−1(¬C) → q) is Unsafe do
5 s := final state of get-mc-cex()
6 B.push(s)
7 while B is not empty do
8 s := B.top()
9 if check-inv(X,T (s), T ∧ (¬C ∧ ¬C′), T−1(¬C) → q) is Unsafe

then
10 t := final state of get-mc-cex()
11 if t ∈ B then
12 return Unsafe
13 B.push(t)

14 else
15 inv := get-mc-inv()
16 C := C ∨ inv
17 B.pop()

18 return Safe

the existence of a lasso-shaped path violating q to that of checking an invariant
property. The idea is to record the first state of a loop satisfying GF¬q by
introducing a copy Xc of the state variables X of S and a fresh variable svd
(saved) to record that the loop has started. Xc is nondeterministically assigned
a state violating q (the start of the loop) and never changed after that, and the
search tries to reach a state where each state variable has the same value as its
copy and svd is true, which implies that a violating lasso is detected.

Abstract Liveness to Safety If S is infinite, the existence of a loop α · βω

proves that S ⊭ FGq, but there may be other non lasso-shaped counterexamples.
This makes the L2S construction incomplete, in the sense that it is no longer
guaranteed to find a counterexample to S |= FGq if one exists, and unsound,
in that S |= FGq does not follow from proving the absence of lasso-shaped
violations. One possibility for restoring soundness is to prove the absence of
lasso-shaped counterexamples in a finite abstraction of the input system, e.g.,
one induced by a finite set of predicates P.

Given P, the abstract liveness-to-safety (αL2S) encoding [23] consists of stor-
ing only the truth assignments to the predicates non-deterministically, and de-
tecting a loop if the system visits again the same abstract state violating q.
Predicate abstraction is however not complete in general for proving liveness
properties of infinite-state systems in the sense that, even if the property is sat-
isfied by the concrete system, there may be no finite set of predicates such that
the abstraction does not contain counterexamples. In [23], predicate abstraction
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Algorithm 2: rlive-inf algorithm for infinite-state liveness checking of
the property FGq with variable set X, initial condition I, transition
relation T .

1 Procedure rlive-inf(X, I, T , FGq) begin
2 P := predicate symbols in I, q
3 W := ∅ // set of well-founded relations

4 while abs-rlive-wfr(X, I, T, q,P,W) is Unsafe do
5 π̂ := get-abs-cex()
6 if feasible(I, T,P, π̂) then
7 return Unsafe

8 W,P := refine(I, T,P, π̂)
9 return Safe

was combined with arguments based on well-founded relations to strengthen the
proof power of the abstraction, and integrated in a CEGAR loop [18] to im-
prove the precision of the abstraction (by discovering either new predicates or
new well-founded relations) upon discovery of spurious counterexamples. The
resulting algorithm performs very well in practice, outperforming alternative
approaches on several benchmarks.

4 Infinite state rlive

In this section we present our generalization of rlive to the infinite-state case,
obtained by leveraging predicate abstraction and well-founded relations. We use
predicate abstraction to address the infiniteness of the state space and well-
founded relations to address abstract paths of the form α̂ · β̂ω that are not
feasible in S, even though every finite unrolling α̂ · β̂ . . . β̂ is feasible.

4.1 High-level CEGAR loop

At the high level, rlive-inf implements a CEGAR loop that at each iteration
generates and solves an abstract liveness checking problem using abs-rlive-wfr,
refining the precision of the abstraction upon detection of spurious counterex-
amples. The pseudocode for the main rlive-inf procedure is shown in Algorithm 2.
The algorithm consists of the following main ingredients:

Abstraction Precision The precision for the abstraction consists of a finite set
of predicates P and a finite set of well-founded relations W. Initially, P contains
all predicate symbols in I and q, and W is empty.

Problem Definition At each iteration of the main loop of line 4, the procedure
abs-rlive-wfr is called to solve the following problem.
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Definition 1 (Abstract Liveness Checking Problem). Given a variable
set X, initial condition I, transition relation T , system S := ⟨X, I, T ⟩, property
P := FGq, predicates P, and set of well-founded relations W, we call abstract
liveness checking the problem of checking whether there exists a finite sequence
π0, . . . , πl of finite paths (called segments) of S such that:

– π0
first |= I, πl

last |= ¬q, and the segments can be concatenated to form an

abstract path π, that is, for all 0 ≤ m < l, π̂m
last = ̂πm+1

first;

– the path π contains four states si, sj ≡ πl
last, sh, and sk (with i ≤ h < k ≤ j)

such that:

1. si |= ¬q, sj |= ¬q, sh |= ¬q, sk |= ¬q;
2. ŝi = ŝj; and

3. for all W ∈ W, (sh, sk) ̸∈W .

If such paths π0, . . . , πl exist, we say that the abstract liveness checking problem
is unsafe, and call the path π an abstract lasso.

If abs-rlive-wfr cannot find an abstract lasso, then the property holds, and
rlive-inf returns Safe 3. Otherwise, the feasible procedure of line 6 checks whether
the abstract lasso corresponds to at least one concrete lasso-shaped path in S
in which ¬q holds at least once in the loop; if this is the case, rlive-inf finds a
counterexample to FGq, and Unsafe is returned.

Refinement If the abstract lasso is infeasible, the refine procedure is invoked
at line 8 to try to improve the precision of the abstraction, by discovering new
predicates and/or new well-founded relations. The method is the same as that
used in [23]. Specifically, the abstract lasso can be spurious for two reasons:

1. either there exists a finite unrolling of the abstract lasso that is infeasible in
the concrete system S; or

2. the looping part of the abstract lasso cannot be executed infinitely often
even though all its finite unrollings are feasible.

In the first case, refine generates new predicates to add to P using Craig in-
terpolation [32], whereas in the second case, refine tries to generate both new
predicates and new well-founded relations using ranking function synthesis tech-
niques from termination analysis [30]. Since the approach in [30] only admits
transition relations without disjunctions that represent “simple lassos” of the
form φstem ∧ φloop, we enumerate all simple lassos symbolically represented by
the candidate counterexample using [39] and synthesize a ranking function for
each. See Section 4.2 of [23] for details. Note that, in general, refinement might
fail (because both Craig interpolation and ranking function synthesis techniques
are incomplete for some theories); in such cases, rlive-inf will diverge.

3 Essentially, Definition 1 ensures that the absence of abstract lassos implies the dis-
junctive well-foundedness of the transitive closure of the transition relation of S [19].
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Algorithm 3: abs-rlive-wfr procedure for fairness conditions q with vari-
able set X, initial condition I, transition relation T , predicate set P, and
well-founded relation set W.

1 C := ⊥ // global persistent cache of blocked states (shoals)

2 Procedure abs-rlive-wfr (X, I, T , q, P, W) begin

3 B̂ := empty stack of abstract states
4 while check-inv(X, I, T ∧ (¬C ∧ ¬C′), T−1(¬C) → q) is Unsafe do
5 ŝ := P-abstraction of final state of get-mc-cex()

6 B̂.push(ŝ)

7 while B̂ is not empty do

8 ŝ := B̂.top()
9 Xc := {xc | x ∈ X}, svd := fresh-bool-var()

10 X := X ∪Xc ∪ {svd}
11 T := T ∧((¬svd ∧ svd′) → ((X = Xc) ∧ ¬q))∧(X ′

c = Xc)∧(svd →
svd′)

12 P :=
(
T

−1
(¬C) ∧ svd ∧ ¬W(Xc, X)

)
→ q

13 if check-inv(X, JŝK ∧ ¬svd, T ∧ (¬C ∧ ¬C′), P ) is Unsafe then

14 t̂ := P-abstraction final state of get-mc-cex()

15 if t̂ ∈ B̂ then
16 return Unsafe

17 B̂.push(t̂)

18 else

19 B̂.pop()

20 inv := get-mc-inv() // includes predicates over Xc, svd

21 Cnew :=
(
∃Xc, svd.

(
inv ∧ ¬svd

))
22 C := C ∨ Cnew

23 return Safe

4.2 Abstract liveness checking

We now describe the core of rlive-inf: abstract liveness checking with the abs-
rlive-wfr procedure. Algorithm 3 provides the pseudocode of the abs-rlive-wfr
procedure, solving the abstract liveness checking problem in Definition 1. Con-
ceptually, the procedure consists of two main blocks:

Segmented Search abs-rlive-wfr translates the abstract liveness checking problem
of Definition 1 into a sequence of invariant checking problems, in which candi-
date abstract lassos are constructed incrementally (segment-by-segment), with a
depth-first search for successor ¬q-states from the current ¬q-state, analogously
to how the original rlive works in the finite-state case.

Caching abs-rlive-wfr maintains a (symbolic) cache of states that cannot be part
of any counterexample, i.e., that cannot be part of any path of S satisfying ¬q
infinitely often. Such cache (made of states belonging to shoals [47]), is global
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and persistent across different calls of abs-rlive-wfr at different iterations of the
main CEGAR loop of Algorithm 2, ensuring that once a set of states is blocked
by rlive-inf, it is never considered again in the future when searching for abstract
lassos.

As compared to finite-state rlive (Algorithm 1), the high-level structure is largely
the same with the following key differences:

Abstract Search Stack The search stack B̂ is a stack of P-abstract states.

Well-founded Relation Reasoning When searching for an abstract lasso, the al-
gorithm checks for path segments that include a pair of ¬q-states not in any
relation in W. It does so with an extended system encoding (lines 10, 11) and
modified property (line 12), explained in detail below.

Shoal Construction When constructing shoals, the extra variables introduced by
the extended system encoding are removed from the returned inductive invariant,
by first forcing svd to false and then by existentially eliminating them (line 21).

The algorithm returns Unsafe if it finds an abstract ¬q-state t̂ already in the
search stack B̂, implying the existence of an abstract lasso. Crucially, the check of
P on line 13 also implies the existence of at least one pair of ¬q-states within that
abstract lasso not in any relation in W. The resulting counterexample will then
be checked for feasibility either due to the imprecision of the P-abstraction or
the existence of a well-founded relation proving the counterexample’s finiteness
by the outer CEGAR procedure.

Otherwise, if no ¬q-state pair not in any relation in W is reachable from the
current top element of B̂, the inductive invariant from the corresponding model-
checking call is added to the shoals C (lines 21-22). The algorithm returns Safe
if there are no more ¬q-states outside the shoals that are reachable from the
initial states.

Extended System Encoding The encoding used to find path segments with
pairs of states not in any well-founded relation in W is inspired by the L2S
encoding. Specifically, it introduces a new variable svd and a copy of the state
variables Xc, with svd initially set to false. The transition relation then enforces:

1. svd is non-deterministically set to true in a state where ¬q holds and Xc

takes on the value of X: ((svd′ ∧ ¬svd) → ((X = Xc) ∧ ¬q)).
2. Once svd is true, it stays true: (svd → svd′).
3. The variables in Xc are frozen: (X ′

c = Xc).

Putting this all together, the extended system S := ⟨X, I, T ⟩ is defined as:

X :=X ∪ {svd} ∪Xc

I := I ∧ ¬svd
T :=T ∧ ((svd′ ∧ ¬svd) → ((X = Xc) ∧ ¬q))∧

(X ′
c = Xc) ∧ (svd → svd′)
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x = 2 x = 1 x = 0

Fig. 1. Visualization of the transition system S of Example 1.

We also modify the property to check instead for a pair of ¬q-states not in any
well-founded relation in W:

P :=
(
T−1(¬C) ∧ svd ∧ ¬W(Xc, X)

)
→ q

Model checking S for the property P will return Unsafe if there is a path π :=
s0, . . . , sc, s

′
c . . . , s where:

1. svd is set after sc: sc ⊭ svd, s′c |= svd, s |= svd.
2. s and sc are ¬q-states: s |= ¬q, sc |= ¬q.
3. (sc, s) are not part of any relation in W: for all W ∈ W,¬W (sc, s).
4. s is not a predecessor of a shoal: s |= T−1(¬C)

As a result, the algorithm constructs a candidate counterexample segment-by-
segment, where each segment has at least one pair of non-well-founded ¬q-states.
Conversely, the algorithm learns states that cannot be part of any counterexam-
ple (i.e., shoals) if all pairs of ¬q-states are in some well-founded relation or no
reachable ¬q-state pair exists.

Shoal Maintenance In general, inductive invariants produced by the check-inv
call on line 13 might contain the extended variables svd and Xc. Such variables
are not part of the original system, and should therefore be removed from the
invariants in order to produce shoals. Note however that simply applying exis-
tential quantifier elimination for this would not work, as the resulting formula
could be too general. Before applying existential elimination, it is necessary to
force svd to be false, as done on line 21. The following example illustrates the
situation.

Example 1. Consider the following transition system S := ⟨X, I, T ⟩:

X := {x} I := ⊤ T := ((x = 2) ∧ (x′ = 1)) ∨ ((x = 0) ∧ (x′ = 0)).

A graphical illustration of S is shown in Figure 1. Suppose we are trying to prove
FGq, where q := (x < 0) ∨ (x > 2), and that P := {(x = 0), (x = 1), (x = 2)}
and W := {W}, where W (y, z) := (y > z) ∧ (z ≥ 0). Note that S ̸|= FGq,
since the path in which x is always set to 0 is a counterexample for the property.
However, suppose that rlive-inf picks ŝ := (x = 2) as the ¬q-state on line 5. Then,
the check on line 13 will return Safe, and suppose now that check-inv returns
the following inductive invariant:

inv := ((x = 2) ∧ ¬svd) ∨ ((x = 1) ∧ (svd → (xc ≥ 2))) ∨
(svd ∧ (xc = 1) ∧ (x = 0)).
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Since inv contains the auxiliary variables xc and svd, we cannot take it directly
as a shoal, because otherwise the check-inv call on line 4 could still return the

same abstract state ŝ, since ŝ ∧ T
−1

(¬inv) ̸|= ⊥. However, simply projecting
away the auxiliary variables via existential quantifier elimination would be un-
sound, as it would generalize inv too much: since ∃(xc, svd).inv is equivalent
to (x = 0) ∨ (x = 1) ∨ (x = 2), adding it as a shoal would block also the state
(x = 0), thus preventing rlive-inf to discover the counterexample and making it
wrongly conclude that the property holds. By forcing svd to false before apply-
ing existential elimination, instead, we obtain the formula (x = 2) ∨ (x = 1),
which is a valid shoal. ⋄

Finally, we would like to remark that in a practical implementation, quantifier
elimination is typically not necessary. For example, if check-inv is based on some
variant of IC3 such as [13], it is possible to prove that the inductive invariants
produced on line 20 are of the form ϕ(X)∧

∧
i(svd → ψi(X,Xc)). In such cases,

the transformation of line 21 to obtain shoals amounts to simply taking ϕ(X).

Example 2. We conclude the section with an example illustrating the behaviour
of rlive-inf. Consider the following symbolic transition system S := ⟨X, I, T ⟩,
where:

X := {l0, l1, x, y}
I := LA

T :=
(
LA ∧ L′

B

)
∨(

LB ∧ L′
B ∧ (x > 0) ∧ (x′ < x)

)
∨(

LB ∧ L′
C

)
∨
(
LA ∧ L′

C

)
∨(

LC ∧ L′
C ∧ (y < 2) ∧ (y < y′)

)
∨(

LC ∧ L′
D

)
∨
(
LB ∧ L′

D

)
∨
(
LD ∧ L′

D

)
where LA := ¬l0∧¬l1, LB := l0∧¬l1, LC := ¬l0∧ l1, LD := l0∧ l1, and x, y ∈ Z.
We call out specifically that self-loop transitions on LB and LC cannot be taken
forever — no matter the value of x and y initially, the self-loop guard conditions
will eventually fail since at each transition x decreases in LB and y increases in
LC . A visualization of the example is shown in Figure 2. We now outline how
rlive-inf proves that S |= FGLD (thus, in this example, q = LD).

Initially, P := {l0, l1}, W := ∅, and C := ⊥. The first check-inv call (line 4)

will cause the abstract ¬q-state ŝ0 := {¬l0,¬l1} to be added to the stack B̂.
The subsequent call to check-inv on line 13 will reach a new abstract ¬q-state
ŝ1 := {l0,¬l1}, which can also be reached again in the subsequent iteration of the
inner loop of line 7, resulting in the abstract lasso ŝ0, ŝ1, ŝ1. The counterexample
is spurious, however, and by analyzing the concretization of the looping part of
the abstract lasso, refinement finds the well-founded relation W1(xc, x) := (xc >
x) ∧ (x ≥ 1), together with a new predicate (x ≥ 1), in order to improve the
precision of the abstraction. 4

The CEGAR loop then executes a new iteration with an updated precision
P := {l0, l1, (x ≥ 1)} and W := {W1}. abs-rlive-wfr will then produce another

4 Our refinement procedure is discussed in Section 4.1. We refer to Section 4.2 of [23]
for additional details.
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LA

LB

LC

LD

(x > 0) ∧ (x′ < x)

(y < 2) ∧
(y < y′)

Fig. 2. Visualization of the transition system S of Example 2 with edges labeled with
constraints placed on x and y wrt LA, LB , LC , and LD.

abstract lasso, namely: {¬l0,¬l1, (x ≥ 1)}, {¬l0, l1, (x ≥ 1)}, {¬l0, l1, (x ≥ 1)}.
Also this counterexample is spurious, and the abstraction in this case can be
refined by adding the relation W2(yc, y) := (y > yc) ∧ (y ≤ 1) to W and the
predicate (y ≤ 1) to P. At this point, the abstraction is sufficiently precise to
make abs-rlive-wfr return Safe. More specifically:

– The check-inv call on line 4 adds the abstract state ŝ0 := {l0,¬l1,¬(x ≥
1),¬(y ≤ 1)} to the stack B̂;

– The check-inv call on line 13 finds a segment starting from ŝ0 to the abstract
state ŝ1 := {¬l0, l1,¬(x ≥ 1), (y ≤ 1)}, which is then added to B̂;

– The next check-inv call, to find another segment starting from ŝ1 and reaching
the next ¬q-state, finds ŝ2 := {¬l0, l1,¬(x ≥ 1),¬(y ≤ 1)} and adds it to B̂;

– At this point, the search for another segment starting from ŝ2 is unsuccess-
ful, since all its successors are q-states. Therefore, the check-inv call on the
extended system ⟨X, Js2K ∧ ¬svd, T ⟩ and invariant property P returns Safe
and produces the inductive invariant l1 ∧ (l0 ∨¬(y ≤ 1))∧ (svd → l0), from
which the shoal l1 ∧ (l0 ∨ ¬(y ≤ 1)) is extracted on line 21 and added to C.

– ŝ2 is then removed from B̂, and another call to check-inv is performed to find
another abstract lasso segment starting from ŝ1. Also in this case, however,
the search is not successful. This is because all successors of ŝ2 in S that
satisfy ¬q are either satisfying W2, or contained in C; therefore, check-inv
returns Safe and generates the invariant l1∧¬l0∧(svd → (y < yc)), resulting
in the new shoal l1∧¬l0. C is then updated to (l1∧(l0∨¬(y ≤ 1)))∨(l1∧¬l0).

– ŝ1 then is removed from B̂, and check-inv is called again on line 13 to find
a segment starting from ŝ0. The seach is again unsuccessful, with check-inv
returning Safe with the invariant l0 ∧ (svd → (xc > x)), resulting in the
shoal l0, thus updating C to (l1 ∧ (l0 ∨ ¬(y ≤ 1))) ∨ (l1 ∧ ¬l0) ∨ l0. In this
case, the use of W1 is crucial for excluding ¬q-successors.

– ŝ0 is removed from B̂, which becomes empty. A new iteration of the outer
loop calls check-inv on line 4, finding no more ¬q-states outside the shoals,
and rlive-inf returns Safe. ⋄
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5 Correctness

In this section, we prove that rlive-inf does not produce wrong results. We begin
by proving the correctness of Algorithm 3, namely that it either proves that
S |= FGq or it finds an abstract lasso. Note that if there is there is no abstract
lasso, then S |= FGq. This follows immediately from the following lemma proved
in [23].

Lemma 1 (Lemma 1 of [23]). Let π be a path satisfying GF¬q and W be a
finite set of well-founded relations. Then, any infinite suffix π′ of π contains two
states s1, s2, each satisfying ¬q, such that (s1, s2) is not in any relation in W.

Corollary 1. If S has a path π satisfying GF¬q, then π is an abstract lasso
for any sets P and W.

The main non-trivial point for proving the correctness of Algorithm 3 is the
shoal construction defined at line 21. In the following lemma, we prove that there
is no abstract lasso starting from any state in C = ∃Xc, svd.

(
inv ∧ ¬svd

)
.

Lemma 2 (Shoal Correctness). Let a variable set X, initial condition I,
transition relation T , transition system S := ⟨X, I, T ⟩, and a formula C(X) such
that there is no abstract lasso starting from C in S be given. Let S := ⟨X, JŝK ∧
¬svd, T ∧ (¬C ∧¬C ′)⟩ where ŝ, X and T are defined as in lines 8, 10 and 11 of
Algorithm 3. Let inv be an inductive invariant entailing ¬P as defined in line 12.
Then there is no abstract lasso starting from Cnew = ∃Xc, svd.

(
inv ∧ ¬svd

)
.

Proof. Suppose by contradiction that there is an abstract lasso π := s0, s1, . . .
starting from a state s0 in Cnew. By definition, there exist si, sj , sh, and sk
(with i ≤ h < k ≤ j) such that:

1. si |= ¬q, sj |= ¬q, sh |= ¬q, sk |= ¬q;
2. for all w ∈ W, (sh, sk) ̸∈ w.

We can extend π to a path π over X by setting svd to false in s0, . . . , sh,
and true elsewhere, and by setting Xc to the value of X in sh everywhere. In
this way, for all l ≥ 0, sl, sl+1 |= T . Since inv is inductive, then for all l ≥ 0,
sl |= inv. However, sk |= ¬q as mentioned before, sk |= svd by construction,
sk |= ¬W(X,Xc) because sh, sk |= ¬W. Finally, note that sh+1 cannot be in C.
Thus, we reach a contradiction with the fact that inv entails ¬P . ⊓⊔

Theorem 1 (abs-rlive-wfr Soundness). Assuming that check-inv is correct, if
Algorithm 3 returns Safe, then S |= FGq; if Algorithm 3 returns Unsafe, then
S has an abstract lasso.

Proof. The algorithm returns Safe when check-inv(X, I, T ∧ (¬C ∧ ¬C ′),¬q ∧
T−1(¬C)) returns Safe. Thus no state in ¬C can reach ¬q. Note that C is
updated only at Line 21 and by Lemma 2, the algorithm maintains as invariant
that C always contains states that cannot be the starting point of an abstract
lasso. Thus, by Lemma 1, S |= FGq.
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The algorithm returns Unsafe when a new state t̂ is found as the last state of
a counterexample by check-inv(X, JŝK∧¬svd, T ∧(¬C∧¬C ′), P ) and t̂ is already
on the stack of abstract states. For every pair of abstract states ŝ and t̂ that are
consecutive on the stack, there exist a path π := s0, s1, . . . , sk such that s0 ∈ JŝK
and sk ∈ Jt̂K; and for some h, for allW ∈ W, (sh, sk) ̸∈W . Moreover there exists
a path π := s0, s1, . . . , sk where s0 |= I and the abstract state of sk is the first
on the stack. Finally, all abstract states on the stack satisfy ¬q. Therefore, there
exists an abstract lasso. ⊓⊔

Theorem 1 allows us to prove the correctness of rlive-inf, provided that the
procedures feasible and refine of Algorithm 2 satisfy some basic soundness as-
sumptions. Specifically, we require feasible to return true only if there exists an
infinite path in S in which ¬q is true infinitely often (and that is consistent with
the abstract lasso), and refine to only produce relations that are well-founded.
We can then state the following.

Theorem 2 (rlive-inf Soundness). Assuming that feasible and refine are cor-
rect, if Algorithm 2 returns Safe, then S |= FGq, and if it returns Unsafe, then
S ̸|= FGq.

6 Limitations

Theorem 2 ensures that rlive-inf is sound, i.e. that a Safe result returned by
Algorithm 2 implies that S |= FGq, and an Unsafe one implies that S ̸|= FGq.
However, since liveness checking for infinite-state systems is in general an unde-
cidable problem, rlive-inf is necessarily incomplete.

A first source of incompleteness lies in the fact that rlive-inf currently only
returns Unsafe if it finds a lasso-shaped counterexample, and therefore it will
diverge (i.e., not terminate) for even simple systems whose only counterexamples
are not lasso-shaped. This limitation can however be addressed by integrating
techniques for LTL falsification in infinite-state systems such as [10]. A second
source of incompleteness is that the calls to check-inv in abs-rlive-wfr are in
general undecidable. Third, both interpolation-based refinement and ranking
function synthesis procedures used for abstraction refinement are incomplete
and might either fail to refine the precision of the abstraction, or produce an
infinite sequence of refinements.

Finally, and perhaps more interestingly, another source of incompleteness
is inherent to the way well-founded relations are integrated in the rlive search.
The extended system encoding presented in §4.2, justified by Lemma 1, implies
that abs-rlive-wfr returns an abstract lasso as soon as it finds any pair of ¬q-
states that are not in any relation in W. However, if that pair is part of a
path that necessarily visits a different pair of abstract states such that all their
concretizations are in some relation already in W, then the entire abstract lasso
is spurious. The following is an example illustrating such situation. Addressing
such limitation of rlive-inf (as well as assessing its impact in practice) is part of
our plans for future work.
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l = 0 l = 1 l = 2 l = 3

Fig. 3. Visualization of the transition system S of Example 3.

Example 3. Consider the following system S := ⟨X, I, T ⟩ where:

X := {l, x, q}
I := (l = 0) ∧ (x > 0) ∧ q
T :=

(
(l = 0) ∧ (l′ = 1) ∧ (x > 0) ∧ (x′ = x− 1) ∧ ¬q′

)
∨(

(l = 1) ∧ (l′ = 2) ∧ (x′ = x+ 1) ∧ ¬q′
)
∨(

(l = 2) ∧ (l′ = 0) ∧ (x′ = x− 1) ∧ ¬q′
)
∨(

(l = 0) ∧ (l′ = 3) ∧ (x ≤ 0) ∧ q′
)
∨(

(l = 3) ∧ (l′ = 3) ∧ q′)

shown graphically in Figure 3. The system satisfies the property FGq, because
every loop from l = 0 to l = 2 (in which ¬q holds) can only be executed a
finite number of times, since the transition from l = 0 to l = 1 is guarded
by a condition (x > 0), and inside the loop x is decremented twice and only
incremented once. Therefore, a suitable well-founded relation that proves that
the loop cannot be executed infinitely often is W (xc, x) := (xc > x) ∧ (x ≥ 0).
However, since the transition from l = 1 to l = 2 violates W , abs-rlive-wfr will
find an abstract lasso and rlive-inf won’t be able to prove the property. ⋄

7 Related Work

Modern symbolic LTL model checking algorithms predominantly rely on SAT-
based methods. Some of them can be trivially extended to infinite-state systems
replacing SAT with SMT solvers.

For example, rlive and k-liveness [16] remain sound also for infinite-state sys-
tems, as they are based on proving FGq properties by showing that ¬q can be
visited only a finite number of times. k-liveness focuses on counting the number
of times ¬q can be visited, while rlive looks for counterexamples by state enu-
meration, while blocking states that can reach ¬q only a bounded number of
times (the “shoals”).

Both rlive and k-liveness rely on invariant model checking with a series of
reachability checks trying to reach ¬q. These subproblems can be addressed
with implicit predicate abstraction [44] as done for example in [12] for k-liveness.
However, they focus on finite paths, and are not amenable to include proofs based
on well-founded relations. We here addressed this challenge in the case of rlive,
but the same idea can be in principle extended to k-liveness.

FAIR [8] and liveness-to-safety [3] search only for lassos and are therefore
unsound when extending to the infinite-state case by just replacing the SAT
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solver with an SMT one. The liveness-to-safety transformation was adapted for
infinite-state systems in [23] with implicit predicate abstraction and well-founded
relations. This approach was shown to be also more effective than algorithms
focused on termination, also employing well-founded relations (cfr.,e.g., [24] and
[42]). The extension of rlive is similar to the one presented in [23]. As we dis-
cussed above, it uses the same high-level CEGAR loop and the same refinement
of predicates and well-founded relations. αL2S also shares the same limitations
described in Section 6 and in particular cannot prove Example 3. However,
the details of rlive-inf are quite different from αL2S. In particular, αL2S uses
a monolithic encoding to find candidate counterexamples, using a single invari-
ant model-checking call wrt. the current level of abstraction, whereas rlive-inf
builds counterexamples iteratively with local searches that do not consider loop
conditions. Further, rlive-inf explicitly caches states known to visit the fairness
condition a finite number of times in shoals. While the formulation of αL2S does
not do any caching, in practice the implementation of [23] uses certain invariants
found from previous calls to the underlying ic3-based model checker.

Other techniques such as [30,22,41,45,27] focus specifically on proving termi-
nation of programs, sometimes under fairness conditions [19]. Extensions of these
techniques to proving temporal properties of systems include [21,20], though they
do not focus on liveness checking of general symbolic transition systems.

Another recent approach to LTL model checking uses neural networks to
search for ranking functions that prove that there is no fair trace in the system
satisfying the property [26]. The technique is based on generating candidate
fair termination certificates by training a neural network on random traces of
the system, and then checking the certificates with an SMT solver. When the
check fails, the SMT counterexample is used for retraining and generate another
candidate certificate. The approach is aimed at hardware designs, although in
principle it could be generalised to infinite-state systems as well.

The model checking approach presented in [25] provides a BMC encoding
for checking general LTL properties on infinite-state systems. The technique
provides certain completeness guarantees given a finite domain and considers a
variety of trace semantics beyond just infinite traces, though the BMC encoding
especially limits its ability to prove properties and will diverge on many problem
instances with infinite domains. Our technique uses implicit abstraction to deal
with the challenges of infinite domains.

8 Experimental Evaluation

In this section, we experimentally evaluate the performance of rlive-inf. We have
implemented the algorithm on top of ic3ia [34], an open source model checker
based on IC3 with implicit abstraction [13], written in C++. 5 Although the
rlive-inf procedure is independent from the underlying theory used to specify

5 An artifact enabling full reproducibility, including also the source code of our im-
plementation and log files of our experiments, is available at https://doi.org/10.
5281/zenodo.15310253

https://doi.org/10.5281/zenodo.15310253
https://doi.org/10.5281/zenodo.15310253
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Fig. 4. Experimental results.

the input system, our implementation currently targets systems expressed using
Boolean and linear arithmetic constraints.

Experimental set up We compare rlive-inf to αL2S, which was shown in [23] to
outperform other approaches to LTL verification for infinite-state symbolic tran-
sition systems, and which to the best of our knowledge still represents the state
of the art in this context. Moreover, since αL2S was also implemented on top of
ic3ia, we reused the same basic components (namely, invariant verification en-
gine [13], SMT solver [14], predicate refinement procedure [32] and generation of
well-founded relations via ranking function synthesis techniques [31]) for imple-
menting rlive-inf. This ensures that the comparison between the two approaches
is fair, and any differences in performance is due to the different features and
search strategies employed by the two techniques, rather than to the different
performance of the underlying engines.

Benchmarks We use the benchmark set of the αL2S article [23] for our compar-
ison. The set consists of 835 liveness verification problems expressed as symbolic
transition systems in the VMT format [15], coming from multiple sources (in-
cluding BIP models from [6], examples derived from the real-time domain [1],
imperative programs from [24], and termination benchmarks from [9]).
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Results We ran our experimental evaluation on a cluster of machines with
AMD EPYC 7413 CPUs and 500Gb of RAM, running Ubuntu Linux 20.04. We
used a timeout of 1200 seconds and a memory limit of 8Gb per instance.

The results of the evaluation are summarized in Figure 4. The scatter plot
on the left shows a direct comparison of the run times of rlive-inf and αL2S on
each individual instance (where safe ones are shown as blue dots and unsafe ones
as red crosses), whereas the plot on the right shows, for each tool, the number
of solved instances (y-axis) in the given time time (x-axis), not including time-
outs/unknowns. In this case, we also include a “virtual best” tool, obtained by
taking the best among rlive-inf and αL2S on each instance. Additional informa-
tion is provided in the table under the plots, where for each tool we show the
number of solved instances (distinguishing also between safe and unsafe ones),
the difference in number of solved instances wrt. rlive-inf, the number of instances
gained (i.e. solved by the given tool but not by rlive-inf) and lost, and the total
execution time taken on solved instances. In all cases, both algorithms agreed
on their answers and no memouts occurred.

From the results, we can conclude that rlive-inf outperforms αL2S both in
terms of number of solved instances (solving 22 more instances than αL2S) and
in terms of runtime efficiency (with an average speedup of 6.47x on instances
solved by both tools). From the plot on the right, we can see that the efficiency
advantage remains regardless of the selected time limit (within the overall time-
out of 1200 seconds used to run the experiments), shown by the fact that the
rlive-inf curve always dominates the one corresponding to αL2S. Interestingly
however, the two techniques compared show a high degree of complementarity,
as highlighted by the scatter plot on the left and by the strong results obtained
by the “virtual best” configuration both in terms of number of solved instances
(34 more than rlive-inf alone) and of runtime efficiency. We believe that our re-
sults demonstrate the practical contributions of our new procedure to advancing
the state of the art in LTL verification for infinite-state systems.

9 Conclusions and Future Work

We have presented rlive-inf, an generalisation of the rlive liveness model checking
algorithm from finite- to infinite-state symbolic transition systems. By integrat-
ing predicate abstraction, invariant checking, and termination techniques based
on well-founded relations, rlive-inf provides an efficient, fully-symbolic LTL model
checker that outperforms the state of the art on a variety of benchmarks.

Regarding future work, we intend to address the limitation described in §6
concerning the integration of well-founded relations in the rlive search. We will
also investigate the use of improved strategies for refinement, leveraging addi-
tional techniques for raking function synthesis such as [45], since this is often a
limiting factor in the effectiveness of the approach. Finally, we intend to inte-
grate techniques for the discovery of non-looping counterexamples for violated
properties [10], and to study the problem of generating proof certificates for
correctness.
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