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Abstract. We take another look at intractable temporal logic specifications, where
the intractability stems from self-reference, unboundedness, or the need for ex-
plicit counting. A classic example is the specification, “Every file that gets opened
eventually gets closed.” In all cases, we show that we can capitalize on realis-
tic constraints implied by the operating environment to generate Mission-time
Linear Temporal Logic (MLTL) encodings with reasonably-sized memory signa-
tures. We derive a new set of rewriting rules for MLTL, accompanied by proofs
of correctness for each rule, and memory optimizations. We utilize these in creat-
ing MLTL encodings for all three patterns of “intractability,” proving correctness,
time complexity, and space complexity for each type of specification encoding.

Keywords: Mission-time Linear Temporal Logic (MLTL) · MLTL Satisfiability
· Temporal Logic Specification.

1 Introduction
Since it was named specifically in 2014 [32] as a particularly popular subset of the log-
ics MTL [29] and STL [26] for industrial practice, Mission-time Linear Temporal Logic
(MLTL) has become increasingly utilized as a specification logic for industrial appli-
cations. For a couple of examples, MLTL was utilized in formal verification on-board
Robonaut2 [18], and the NASA Lunar Gateway project is currently using this logic
for requirements capture, design-time testing, and online runtime verification [7,8,9].
While we can use established algorithms for evaluating more expressive logics of which
MLTL is a subset, previous work has shown that there are substantial advantages to
working in MLTL directly, for example in satisfiability checking [24], model checking
[19], and runtime verification [16]. We know from these studies that MLTL brings the
advantages of being easier to validate and more efficient to evaluate than more expres-
sive, higher-order Logics [23]. However, these advantages come with an expressability
trade off; the value of MLTL is limited to the specifications we can accurately capture
in it.

There are common specifications that industrial practitioners tend to naturally ex-
press using, e.g., first order (FO) logic, but doing so precludes using their established,
efficient evaluation tools developed for lower-order temporal logics like MLTL and
LTL; satisfiability of first-order logic is undecidable [3]. This has spurred many ad-
vances in more-efficiently evaluating more-expressive extensions of linear-time tem-
poral logics that capture higher-order sentiments. Using Petri nets as an intermediate
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specification language, [14] defined a full FO-LTL for specifying liveness in concurrent
systems. Quantified Propositional Temporal Logic (QPTL) [34] extends MLTL with
limited quantification while only incurring non-elementary complexity [34]. Quanti-
fied Linear Temporal Logic (QLTL) [30] specifically defines complexity with respect
to Markov processes as a function of number of alternating quantifiers, thus provid-
ing a middle-ground restriction on both expressiveness and complexity. Variable-LTL
(VLTL) [37] studies which quantifier patterns do and do not forfeit decidability and re-
stricts specifications to those. FO-LTL [22] looks for finite models of infinite domains,
relying on the structure of FO fragments and quantifier ordering to bound complexity.

Capitalizing on realistic limits on the evaluation domain led to several tractable al-
gorithms for linear-time logics with first-order-like extensions. First order LTL over Fi-
nite Time Structures FO-LTLfin defined a procedure for checking validity given a finite
time horizon [5]. Finite domains enabled reducing first-order properties to a satisfiabil-
ity check on the sequential circuit representation of a program for model checking [27].
Finite Quantified LTL (FQLTL) [6] extends LTL with quantifiers over finite domains,
targeting infinite time evaluation by generating LTL formulas during execution rather
than enforcing restrictions in preprocessing.

With this in mind, we take another look at common “first order” specifications like
“every file that gets opened eventually gets closed.” Depending on the logical encod-
ing of this specification, its evaluation could involve unboundedness (e.g., unbounded
number of files), self-reference (e.g., closing a file refers back to the specific file that
was opened), or counting, all of which are provably outside the expressability of linear-
time logics including MLTL and LTL [12,38]. We note that industrial domains, i.e., the
domain where we will evaluate this specification in performing some verification task,
naturally impose restrictions that we can use to encode this specification in lower-order
logic without changing its meaning. For example, we are tempted to start the encoding
with “for all files,” yet the default open-file limit in Linux is 1024[36], quite a small
number in practice. This leads to an important realization: by parameterizing specifi-
cation patterns over reasonable limits we can expect to be imposed by the evaluation
domain, we can design a set of MLTL encodings of many common “intractable” speci-
fications without changing their meaning, extending the logic, or precluding the use of
efficient existing tools for MLTL evaluation.

Having an extensive set of categorized rewriting rules for LTL enables the current
state-of-the-art encodings of that logic for a variety of evaluation algorithms; see, e.g.,
SPOT [10,11]. Therefore, we contribute such a set for MLTL in Section 3 including
their proofs of correctness and scalability in terms of reducing the memory signature
of the MLTL formula; these utilize the MLTL semantics included in our preliminaries
Section 2. We contribute MLTL specification patterns covering common statements
that involve self-reference in Section 4, unboundedness in Section 5 and counting in
Section 6, including proofs of correctness, time complexity, and memory scalability for
the last two. Section 7 contributes an illustrative example to show the effectiveness of
pairing the presented techniques to reduce memory requirements for realistic industrial
domain parameters. Section 8 concludes with impacts and future work.
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2 Preliminaries: Mission-time LTL and Formula-wise Encoding

Mission-time Linear Temporal Logic (MLTL) [24] is a bounded variant of MTL [1]
where each temporal operator has an associated closed natural number interval bound.

Definition 1 (MLTL Syntax). The syntax of an MLTL formula φ over a set of atomic
propositions AP is recursively defined as:

φ ::“ true | false | p | ␣ψ | ψ ^ ξ | ψ _ ξ | lIψ | ♢Iψ | ψ UI ξ | ψ RI ξ

where p P AP , ψ and ξ are MLTL formulas, and I is an interval rl, us such that l, u P N
and l ď u.

We evaluate MLTL formulas over finite traces. Let π be a finite trace where an
element at timestamp i P N0 is πris Ď AP such that |π| is the length of π where
i ă |π| ă `8 and πi is the suffix of π starting at and including i.

Definition 2 (MLTL Semantics). The satisfaction of an MLTL formula by a trace π is
defined recursively as:

‚ π |ù p iff p P πr0s ‚ π |ù ␣φ iff π * φ
‚ π |ù φ^ ψ iff π |ù φ and π |ù ψ
‚ π |ù φ Url,us ψ iff |π| ě l and there exists a j P rl, us such that πj |ù ψ and
πk |ù φ for all k P rl, us such that k ă j.

We say two MLTL formulas φ,ψ are semantically equivalent (denoted as φ ” ψ) if and
only if π |ù φ ô π |ù ψ for all traces π over AP . To complete the MLTL semantics,
we define false ” ␣true, φ _ ψ ” ␣p␣φ ^ ␣ψq, ␣pφ UI ψq ” p␣φ RI ␣ψq and
␣♢Iφ ” lI␣φ. MLTL keeps the standard operator equivalences from LTL, including
♢Iφ ” ptrue UI φq, lIφ ” pfalse RI φq. Notably, MLTL discards the next (X )
operator, since Xφ ” lr1,1sφ.

2.1 MLTL Formula-wise AST Encoding Structure

We focus on memory usage optimization techniques that use an Abstract Syntax Tree-
based (AST) representation for MLTL formulas. Each node in the AST of an MLTL
formula φ computes and stores a result-timestamp pair Tφ “ pv, tq for the correspond-
ing sub-formula with respect to an input trace where v P ttrue, falseu and t P N0. We
call result-timestamp pairs verdicts.

Propagation Delay To compute the required memory for each node in an AST-encoded
MLTL formula, we must first compute the earliest and latest timestamps when we may
have sufficient information to evaluate the formula. We bound these timestamps using
the upper and lower interval bounds of the temporal operators in a given formula.

Definition 3 (Propagation Delay). [17] The propagation delay of an MLTL formula φ
is the time between when a set of propositions πris arrives and when it is possible to
know if πi |ù φ. A node’s worst-case propagation delay (wpd) is its maximum propaga-
tion delay, and the minimum value is its best-case propagation delay (bpd).
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Definition 4 (Propagation Delay Semantics). [17] Let φ,ψ, ψ1, ψ2 be well-formed
MLTL formulas where φ.bpd and φ.wpd are the best- and worst-case propagation de-
lays of formula φ respectively:

if φ P AP :

#

φ.wpd “ 0

φ.bpd “ 0
if φ “ ␣ψ :

#

φ.wpd “ ψ.wpd

φ.bpd “ ψ.bpd

if φ “ lrl,usψ or φ “ ♢rl,usψ :

#

φ.wpd “ ψ.wpd` u

φ.bpd “ ψ.bpd` l

if φ “ ψ1 _ ψ2 or φ “ ψ1 ^ ψ2 :

#

φ.wpd “ maxpψ1.wpd, ψ2.wpdq

φ.bpd “ minpψ1.bpd, ψ2.bpdq

if φ “ ψ1 Url,us ψ2 or φ “ ψ1 Rrl,us ψ2 :

#

φ.wpd “ maxpψ1.wpd, ψ2.wpdq ` u

φ.bpd “ minpψ1.bpd, ψ2.bpdq ` l

The values of φ.wpd and φ.bpd are based solely on the structure of the given formula
φ and do not take into account interactions between sub-formulas. For example, the
formula lr0,5sφ_lr0,10sφ has a structural worst-case propagation delay of 10 but the
relationship between the two lI operators always allows evaluation of the formula by
time step 5. In other words, we can simplify this formula to lr0,5sφ.

2.2 MLTL AST Encoding Memory Requirements [17]

Consider an AST node g and its set of sibling nodes Bg (not including g). The minimum
required memory (with respect to the number of verdicts) for g is:

memnodepgq “ maxpmaxtb.wpd | b P Bgu ´ g.bpd, 0q ` 1 (1)

We can recursively compute the memory requirements of an AST rooted at g, where Cg
is the set of child nodes of g, as follows:

memAST pgq “ memnodepgq `
ÿ

tmemAST pcq | c P Cgu (2)

^

lr2,3s ♢r4,9s

p q

Fig. 1: AST for
the MLTL formula
plr2,3spq ^ p♢r4,9sqq
where p, q P AP .

Formula 1 accounts for the worst-case input with respect to
evaluating the parent of g. Consider a trace π, time 0 ď i ă |π|,
and a node g such that g’s value is known at index i`g.bpd but
the value of a sibling node bmax is known at index i`bmax.wpd
where bmax.wpd “ maxtb.wpd | b P Bgu. In order to evaluate
g’s parent at i, we must know the evaluations of both g and
bmax at i and therefore buffer the values of g from indices i `
g.bpd to i`bmax.wpd. If bmax.wpd´g.bpd ě 0, this requires a
buffer of size pi`bmax.wpdq´pi`g.bpdq “ bmax.wpd´g.bpd,
otherwise we do not need to buffer values at node g.
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As an example, consider the AST in Figure 1. We see that memnodep^q “ 1 since
the node has no siblings. Now, for each temporal node we have

memnodeplr2,3sq “ maxpmaxt♢r4,9s.wpdu ´lr2,3s.bpd, 0q ` 1 “ 8

memnodep♢r4,9sq “ maxpmaxtlr2,3s.wpdu ´ ♢r4,9s.bpd, 0q ` 1 “ 1

Finally, each memnodeppq “ memnodepqq “ 1 bit. Putting this all together:

memAST p^q “ memnodep^q `memnodeplr2,3sq `memnodep♢r4,9sq`

memnodeppq `memnodepqq “ 12

3 MLTL Encoding Optimizations

We present MLTL rewriting rules for reducing the AST encoding size of MLTL for-
mulas that can be applied automatically during MLTL formula encoding. This type of
optimization is similar to SPOT’s [11] optimizations for LTL, with the primary differ-
ence being SPOT minimizes the size of an LTL formula’s automata representation.

Figure 2 contains the MLTL rewrite rules. We first prove that both sides of each
rewrite rule are equivalent using trivially-derived equivalences from LTL and the se-
mantic definitions of MLTL operators. We then show how each rewriting rule main-
tains or reduces the memory of a given MLTL formula. First, recall that MLTL does
not include a Next-time operator (X ) as in LTL because it is equivalent to lr1,1s. More

lrl1,u1slrl2,u2sφ ÞÑ lrl1`l2,u1`u2sφ ♢rl1,u1s♢rl2,u2sφ ÞÑ ♢rl1`l2,u1`u2sφ (R1)

lrl1,u1sφ^lrl2,u2sψ ÞÑ lrl3,u3splrl1´l3,u1´u3sφ^lrl2´l3,u2´u3sψq

♢rl1,u1sφ_ ♢rl2,u2sψ ÞÑ ♢rl3,u3sp♢rl1´l3,u1´u3sφ_ ♢rl2´l3,u2´u3sψq (R2)

where l3 “ minpl1, l2q, u3 “ l3 `minpu1 ´ l1, u2 ´ l2q, l3 ă u3

lra,as♢rl,usφ ÞÑ ♢rl`a,u`asφ ♢rl,uslra,asφ ÞÑ ♢rl`a,u`asφ

♢ra,aslrl,usφ ÞÑ lrl`a,u`asφ lrl,us♢ra,asφ ÞÑ lrl`a,u`asφ
(R3)

lrl1,u1sφ^lrl2,u2sφ ÞÑ lrl1,u3sφ ♢rl1,u1sφ_ ♢rl2,u2sφ ÞÑ ♢rl1,u2sφ
(R4)

where l1 ď l2 ď u1 ` 1, u3 “ maxpu1, u2q

lrl1,u1sφ_lrl2,u2sφ ÞÑ lrl2,u2sφ ♢rl1,u1sφ^ ♢rl2,u2sφ ÞÑ ♢rl2,u2sφ

where l1 ď l2 ď u2 ď u1

(R5)

lra,aspφ Url,us ψq ÞÑ φ Url`a,u`as ψ plra,asφq Url,us plra,asψq ÞÑ
φ Url`a,u`as ψ

(R6)

pφ1 Url,u1s φ2q ^ pφ3 Url,u2s φ2q ÞÑ pφ1 ^ φ3q Url,u1s φ2 (R7)

where l ď u1, l ď u2, u1 ď u2

φ Url1,u1s lr0,u2sφ ÞÑ lrl1,l1`u2sφ φ Url1,u1s ♢r0,u2sφ ÞÑ ♢rl1,l1`u2sφ (R8)

Fig. 2: Table of MLTL rewrite rules where φ,ψ, φ1, φ2, φ3 are well-formed MLTL for-
mulas and a, l, u, l1, u2, l2, u2, l3, u3 P N0 such that l ď u, l1 ď u1, l2 ď u2, l3 ď u3.
Each group of rules has identical constraints on their interval bounds.
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generally, we can express a P N0 nested X operations with a singleton interval such as
in lra,as. We therefore observe the following equivalences:

lra,asφ ” ♢ra,asφ ” ψ Ura,as φ (3)

The following directly follow from the semantics of UI :

false Url,us φ ” lrl,lsφ true Url,us φ ” ♢rl,usφ φ Url,us φ ” lrl,lsφ (4)

With these basic equivalences in hand, we can show that each rewrite rule preserves the
MLTL semantics and thus is also an equivalence relation.

Theorem 1 (Equivalence of MLTL Rewrite Rules). Let φ,ψ, φ1, φ2, φ3 be well-
formed MLTL formulas and a, l, u, l1, u2, l2, u2, l3, u3 P N0 such that l ď u, l1 ď u1,
l2 ď u2, l3 ď u3. Then each rewrite relation (ÞÑ) in Fig 2 is also an equivalence
relation.

Proof Sketch. 1 We case split over each rule and prove the left- and right-hand sides
of each ÞÑ relation to be equivalent. Most rules follow directly from the semantics of
MLTL (e.g., (R1)) and we present the more complicated proof for (R2) to illustrate:

(R1): Let π be a finite trace such that π |ù lrl1,u1slrl2,u2sφ. We show that π |ù lrl1`l2,u1`u2sφ.
By the semantics of lI , we know that πi` |ù lrl2,u2sφ for each i P rl1, u1s. Intu-
itively, this means that π satisfies φ at timestamps rl2, u2s relative to i i.e., πi |ù φ
starting at the timestamp i ` l2 and ending at i ` u2. So, applying the semantics
of lI again, we have that πi`j |ù φ for each j P rl2, u2s. By the definition of
trace suffixes, this means that πk |ù φ for each k P rl1 ` l2, u1 ` u2s. Therefore
π |ù lrl1`l2,u1`u2sφ. The converse proof follows from a similar argument.

(R2): Using (R1), we see that

lrl1,u1sφ^lrl2,u2sψ ” lrl3,l3slrl1´l3,u1´l3sφ^lrl3,l3slrl2´l3,u2´l3sψ.

This follows if both intervals rl1 ´ l3, u1 ´ l3s, rl2 ´ l3, u2 ´ l3s are valid i.e., (a)
l1 ´ l3 ě 0, (b) l2 ´ l3 ě 0, and (c) l1 ´ l3 ď u1 ´ l3, (d) l2 ´ l3 ď u2 ´ l3.
(a) Recall that l3 “ l1, then l3 ď l1.
(b) Recall that l3 “ l1 ď l2, then l2 ´ l3 ě 0ñ l2 ě l3 ñ l3 ď l2 holds.
(c) Since l1 ď u1, we see that l1 ´ l3 ď u1 ´ l3 ñ l1 ď u1 holds.
(d) Since l2 ď u2, we see that l2 ´ l3 ď u2 ´ l3 ñ l2 ď u2 holds.
Now, let u3 “ l3 `minpu1 ´ l1, u2 ´ l2q. Applying (R1) once more, we have

lrl3,l3slrl1´l3,u1´l3sφ^lrl3,l3slrl2´l3,u2´l3sψ ”

lrl3,u3slrl1´l3,u1´u3sφ^lrl3,u3slrl2´l3,u2´u3sψ.

Since this only affects the upper bounds of the inner l operators, we show that (a)
l1 ´ l3 ď u1 ´ u3 and (b) l2 ´ l3 ď u2 ´ u3.
(a) Consider the two cases of u1 ´ l1 ď u2 ´ l2 and u2 ´ l2 ă u1 ´ l1:

1 The full proof for the entire set of rules can be found at https://temporallogic.org/research/
FMICS2023/.

https://temporallogic.org/research/FMICS2023/
https://temporallogic.org/research/FMICS2023/
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(i) Assume u1 ´ l1 ď u2 ´ l2, then u3 “ u1 ´ l1 ` l3. Replacing this in the
target inequality, we have l1´ l3 ď u1´pu1´ l1` l3q ñ l1´ l3 ď l1´ l3.

(ii) Otherwise, u2 ´ l2 ă u1 ´ l1. Then u3 “ u2 ´ l2 ` l3, and replacing this
in the target inequality, we have l1 ´ l3 ď u1 ´ pu2 ´ l2 ` l3q ñ 0 ď
u1 ´ l3 ´ pu2 ´ l2q ñ u2 ´ l2 ď u1 ´ l3. Now, since l3 “ l1, we have
u2 ´ l2 ď u1 ´ l1 which is true from our assumption.

(b) Consider the two cases of u1 ´ l1 ď u2 ´ l2 and u2 ´ l2 ă u1 ´ l1:
(i) Assume u1 ´ l1 ď u2 ´ l2, then u3 “ u1 ´ l1 ` l3. Replacing this in the

target inequality, we have l2 ´ l3 ď u2 ´ pu1 ´ l1 ` l3q ñ l2 ´ l3 ď
u2 ´ u1 ` l1 ´ l3 ñ l2 ď u2 ´ u1 ` l1 ñ u1 ´ l1 ď u2 ´ l2, which is
true from our assumption.

(ii) Otherwise, u2 ´ l2 ă u1 ´ l1, then u3 “ u2 ´ l2 ` l3. Replacing this in
the target inequality, we have l2 ´ l3 ď u2 ´ pu2 ´ l2 ` l3q ñ l2 ´ l3 ď
u2 ´ u2 ` l2 ´ l3 ñ l2 ď u2 ´ u2 ` l2 ñ l2 ď l2.

Finally, we prove that

lrl3,u3slrl1´l3,u1´l3´u3sφ^lrl3,u3slrl2´l3,u2´l3´u3sψ ”

lrl3,u3splrl1´l3,u1´l3´u3sφ^lrl2´l3,u2´l3´u3sψq.

Let π be a finite trace such that

π |ù plrl3,u3slrl1´l3,u1´l3´u3sφq ^ plrl3,u3slrl2´l3,u2´l3´u3sψq.

We apply the semantic definitions of^ and lI to see that πi |ù lrl1´l3,u1´l3´u3sφ
and πi |ù lrl2´l3,u2´l3´u3sψ for all i P rl3, u3s. Combining these relations using
the semantics of ^ once more, we see that

πi |ù lrl1´l3,u1´l3´u3sφ^lrl2´l3,u2´l3´u3sψ

for all i P rl3, u3s. Using the semantics of lI again, we see that

π |ù lrl3,u3splrl1´l3,u1´l3´u3sφ^lrl2´l3,u2´l3´u3sψq.

The converse proof follows from a similar argument.

˝

Inapplicable LTL Equivalences While the equivalences discussed so far have corre-
sponding equivalence relations in LTL, there are some LTL equivalences without such
a relation in MLTL. For instance, consider the LTL formula ♢pφUψq ” ♢ψ. Intuitively,
so long as ψ holds at some timestamp i in a given trace, then it is trivially true that φUψ
holds at i in that trace. However, once we add interval bounds to each temporal operator
as in ♢rl1,u1spφ Url2,u2s ψq there is now a constraint on when ψ can hold in a trace with
respect to φ and still satisfy the formula. For example, if πl1`l2 * ψ for some trace π
that models this MLTL formula, then necessarily πl1`l2 |ù φ i.e., the satisfaction of φ
is still relevant for some satisfying traces.

Similarly, consider the LTL equivalence ♢lφ^ ♢lψ ” ♢lpφ^ ψq. Again, intu-
itively, the LTL operators ♢ and l do not specify when their operands must hold, just
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that they both eventually always hold. When we add bounds to the left-hand side as in
♢rl1,u1slrl2,u2sφ^♢rl3,u3slrl4,u4sψ, both φ and ψ have constraints on when they must
hold in order for a trace to satisfy this formula, and when this is exactly may differ for
either φ or ψ. Speaking generally, MLTL places more constraints on the set of traces
that satisfy a given formula than LTL.

Memory Effects of Rewriting Rules on MLTL AST Encodings Applying these
rewriting rules strategically can reduce the overall memory requirements of the AST
encoding of the MLTL formula. These rules reduce memory requirements in one of
two ways: (1) by tightening propagation delays or (2) by reducing formula length.

From Equation 2, an AST node g’s required memory is the difference between that
g.bpd, and the maximum wpd of its siblings. Therefore, reducingmaxtb.wpd | b P Bgu
for a set of sibling nodes Bg can reduce the memory requirements of all other sibling
nodes in Bg . Furthermore, reducing g’s wpd can reduce its ancestors’ wpd, which in
turn could reduce the memory requirements for the ancestors’ set of siblings in the
same manner. In the following, we use φpψ1 ÞÑ ψ2q to denote an MLTL formula that is
identical to a formula φ where a sub-formula ψ1 of φ is replaced with ψ2.

Lemma 1 (Memory Effect of Tighter BPD). Let φ, ψ1, ψ2 be well-formed MLTL for-
mulas where ψ1 is a sub-formula of φ, ψ2 is the sub-formula in φpψ1 ÞÑ ψ2q, and
ψ1.bpd ď ψ2.bpd. Then

memnodepψ1q ě memnodepψ2q.

Proof. We first note that ψ1, ψ2 have the same set of siblings i.e., Bψ1 “ Bψ2 “ B.
Then from Equation 1 we see that

memnodepψ1q “maxpmaxtb.wpd | Bu ´ ψ1.bpd, 0q ` 1

ěmaxpmaxtb.wpd | Bu ´ ψ2.bpd, 0q ` 1

“memnodepψ2q

˝

Lemma 2 (Memory Effect of Tighter WPD). Let φ, ψ1, ψ2 be well-formed MLTL
formulas where ψ1 is a sub-formula of φ, ψ2 is the sub-formula in φpψ1 ÞÑ ψ2q, and
ψ2.wpd ď ψ1.wpd. Then

memAST pφpψ1 ÞÑ ψ2qq ´memAST pψ2q ď memAST pφq ´memAST pψ1q

Proof. As in the proof for Lemma 1, ψ1, ψ2 have the same set of siblings i.e., Bψ1 “

Bψ2
“ B.

First, assume ψ1.wpd ď maxtbψ1
.wpd | bψ1

P Bψ1
u i.e., ψ1 does not have the

maximum wpd of all of its sibling nodes. Then

maxtbψ1
.wpd | bψ1

P Bψ1
u “ maxtbψ2

.wpd | bψ2
P Bψ2

u

since rewriting φ from ψ1 to ψ2 does not affect the sibling nodes for either ψ1, ψ2.
ThereforememAST pφpψ1 ÞÑ ψ2qq´memAST pψ2q “ memAST pφq´memAST pψ1q.
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Otherwise, ψ1 has the maximum wpd of all of its sibling nodes i.e.,

ψ1.wpd ą maxtbψ1
.wpd | bψ1

P Bψ1
u

Then the amount of memory required for each node bψ1 P Bψ1 is memnodepbψ1q “

maxpψ1.wpd´bψ1 .bpd, 0q. Importantly, each node bψ1 P Bψ1 has a structurally identi-
cal counterpart in Bψ2

since we defined φ as identical to φpψ1 ÞÑ ψ2q, except where ψ1

is replaced with ψ2. We define a mapping Sib : Bψ1
Ñ Bψ2

such that Sibpbψ1
q “ bψ2

.
This implies that bψ1

.bpd “ Sibpbψ1
q.bpd for each b P Bψ1

. Therefore, we see that each
sibling node of ψ2 has a lower memory requirement than the corresponding sibling node
of ψ1 for all b P Bψ1 :

memnodepbψ1
q “ maxpψ1.wpd´ bψ1

.bpd, 0q ď maxpψ2.wpd´ Sibpbψ1
q.bpd, 0q

Further, the propagation delay semantics (Def. 4) dictate that the wpd of a node is
greater than or equal to the maximum wpd of all its children. Since we assumed that
ψ1 has the maximum wpd of its parent’s children (i.e., ψ1’s siblings) and ψ2.wpd ď
ψ1.wpd, it follows that the ψ2’s parent would have a lower wpd than ψ1’s parent. We
can apply this argument recursively to each ancestor of ψ2 such that every ancestor of
ψ2 will have a lower or equal wpd than the corresponding ancestor of ψ1, where the
preceding relation holds if the wpd is lowered and the first assumption of the proof
holds otherwise.

Then the sibling nodes of each ancestor of ψ2 will have a lower or equal memory re-
quirement than the sibling nodes of each ancestor of ψ1. Therefore memAST pφpψ1 ÞÑ

ψ2qq ´memAST pψ2q ď memAST pφq ´memAST pψ1q. ˝

Intuitively, Lemma 1 and Lemma 2 express the notion that a semantically equivalent
formula with a tighter propagation delay results in reduced required memory. A tighter
propagation delay provides more information as to when the formula will be evaluated
in the best and worst cases, requiring less memory for storing intermediate results.

Theorem 2 (Memory Reduction of Rewriting Rules). Let φ, ψ1, ψ2 be well-formed
MLTL formulas where ψ1 is a sub-formula of φ. Then applying a valid rewrite rule in
Figure 2 to ψ1 will result in a new formula φpψ1 ÞÑ ψ2q such that φ ” φpψ1 ÞÑ ψ2q

and
memAST pφpψ1 ÞÑ ψ2qq ď memAST pφq

Proof Sketch. 2 The proof case splits over each rewrite rule and applies Lemma 1 and
Lemma 2 to show that each rule causes a memory reduction, where we know from
Theorem 1 that each rule maintains semantics. We show the proof for (R2) to illus-
trate, since the rule increases the resulting formula size by 1 and does not tighten the
propagation delays of the top-level node:

First, let ψ1 “ lrl1,u1sφ1 ^ lrl2,u2sφ2 and ψ2 “ lrl3,u3splrl1´l3,u1´u3sφ1 ^

lrl2´l3,u2´u3sφ2q where l1 ď u1, l2 ď u2, l3 “ minpl1, l2q, u3 “ l3 ` minpu1 ´

2 The full proof can be found at https://temporallogic.org/research/FMICS2023/.

https://temporallogic.org/research/FMICS2023/
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l1, u2 ´ l2q, and l3 ă u3. We show that

ψ1.wpd “maxpφ1.wpd` u1, φ2.wpd` u2q

“maxpφ1.wpd` u1 ` pu3 ´ u3q, φ2.wpd` u2 ` pu3 ´ u3qq

“maxpφ1.wpd` u3 ` pu1 ´ u3q, φ2.wpd` u3 ` pu2 ´ u3qq

“u3 `maxpφ1.wpd` pu1 ´ u3q, φ2.wpd` pu2 ´ u3qq

“ψ2.wpd.

Therefore we have memAST pφpψ1 ÞÑ ψ2qq ´ memAST pψ2q ď memAST pφq ´
memAST pψ1q by Lemma 2. A similar derivation is used to show that ψ1.bpd “ ψ2.bpd,
so memnodep^1q ě memnodeplrl3,u3sq by Lemma 1 where ^1,^2 denote the ^-
nodes in ψ1, ψ2 respectively.

Next we show that memAST pψ1q ě memAST pψ2q. First, we see that because
l3 ă u3:

memnodeplrl1,u1sq “ppφ2.wpd` u2q ´ pφ1.bpd` l1q ` 1q

ąppφ2.wpd` pu2 ´ u3qq ´ pφ1.bpd` l1 ´ l3q ` 1q

“ppφ2.wpd` u2q ´ pφ1.bpd` l1q ` 1q ` pl3 ´ u3q

“memnodeplrl1´l3,u1´u3sq.

Similarly, memnodeplrl2,u2sq ě memnodeplrl1´l3,u1´u3sq. Then

memAST pψ1q “memnodep^1q `memnodeplrl1,u1sq `memnodeplrl2,u2sq

memAST pφ1q `memAST pφ2q

ěmemnodeplrl3,u3sq `memnodeplrl1,u1sq `memnodeplrl2,u2sq

memAST pφ1q `memAST pφ2q

ěmemnodeplrl3,u3sq `memnodeplrl1´l3,u1´u3sq ` 1`

memnodeplrl2´l3,u2´u3sq `memAST pφ1q `memAST pφ2q

“memnodeplrl3,u3sq `memnodeplrl1´l3,u1´u3sq `memnodep^2q

memnodeplrl2´l3,u2´u3sq `memAST pφ1q `memAST pφ2q

“memAST pψ2q.

Combining Lemma 2 and the previous result, we have that memAST pφpψ1 ÞÑ ψ2qq ď

memAST pφq for (R2). The rest of the rules rely on either tightening the propagation
delay or reducing the number of nodes in the rewritten AST in order to reduce memory
requirements. ˝

4 Realizing Self-Reference Via Slot-Based MLTL Encoding

When monitoring formulas over sets, one area of concern deals with self-reference
within a formula. The requirement “Every file that gets opened eventually gets closed”
is a simple classical example that illustrates this concern [20].
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One formalization of this requirement using First-order Logic is

@f.openpfq Ñ ♢closepfq (5)

where the predicate closepfq refers to an object that is referenced earlier in the spec-
ification (i.e., f in the predicate openpfq). While some have attempted to resolve this
issue in runtime monitoring, wherein reference variables are dynamically instantiated
during system execution [13], there is no way to ensure that these predicates refer to
the same f in general without infinite space to accommodate an unbounded number
of dynamically instantiated monitors. We present slot-based monitoring as an alterative
technique to ensure consistency of an object’s identity over the course of a formula
evaluation within finite space.

To this end, we shift from reasoning about objects themselves to reasoning about
an underlying data structure and introduce the notion of a “slot” that tracks the data
necessary for evaluation of an MLTL formula.

Definition 5 (Slot). A slot Sm is a set of atomic proposition symbols, has a slot ID
m P N, has an object ID idpSmq P N Y K, and has a “no change” proposition ncm
that is true at time i if and only if idpSmq has not changed between time i´ 1 and i.

We include the object ID number to track the identity of the contents in the slot as most
real-world objects will have some identifier that can be encoded as a natural number.
For a finite set of slots S and m P r1, |S|s, we rename each proposition p P Sm to
pm and add it to AP . If Sm is empty at time i, then idpSmq “ K and none of its
propositions pm are in πris for any trace π.

As an example, consider a slot S1 “ topen1, close1, nc1u and formula open1 Ñ

♢r0,tsclose1. Intuitively, this formula should evaluate to true at time step j if S1 is
empty, open is not true for the object in S1 at time j, or open is true for the object in
S1 at time j and close is true for the object S1 for some time in rj, j ` ts.

To formalize this notion of enforcing the consistency of an object in a slot S, we
define a function h that adds this constraint to a “self-referential” MLTL formula using
the available proposition ncm. Let l, u P N0 such that l ď u and 0 ă u and φ be an
MLTL formula. Then h is defined recursively by:
‚ hpm, pq “ p ‚ hpm,␣φq “ ␣hpm,φq
‚ hpm,ψ _ ξq “ hpm,ψq _ hpm, ξq
‚ hpm,lrl,usφq “ lr1,usncm ^lrl,ushpm,φq
‚ hpm,♢rl,usφq “ lr1,l´1sncm ^ ncm Url,us pncm ^ hpm,φqq if l ě 2, otherwise
‚ hpm,♢rl,usφq “ ncm Url,us pncm ^ hpm,φqq
‚ hpm,ψ Url,us ξq “ lr1,l´1sncm ^ ppncm ^ hpm,ψqq Url,us pncm ^ hpm, ξqqq if
l ě 2, otherwise
‚ hpm,ψ Url,us ξq “ pncm ^ hpm,ψqq Url,us pncm ^ hpm, ξqq

Theorem 3 (Slot-based MLTL Encoding Correctness). Let Sm be a slot, φ be an
MLTL formula, and π be a finite trace. Then π |ù hpm,φq if and only if π |ù φ
and the object ID of slot Sm does not change while φ is evaluated.

Proof Sketch. We prove via induction on the form ofφ that each sub-formula of hpm,φq
maintains the semantics of φ and enforces that the object in Sm does not change until
φ is evaluated. For a finite trace π:
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– If φ “ p, φ “ ␣ψ or φ “ φ1 _ φ2, then hpm,φq does not alter the φ’s semantics.
– If φ “ lrl,usψ, then hpm,φq evaluates whether both π |ù lrl,usψ and the object

ID in Sm does not change between the current timestamp and u.
– If φ “ ♢rl,usψ, then hpm,φq evaluates whether both π |ù ♢rl,usψ (implied by the

semantics of UI ) and the object ID in Sm does not change between the current
timestamp and l ´ 1 as well as until either π |ù ψ or π * ♢rl,usψ.

– If φ “ ψ Url,us ξ, then hpm,φq evaluates whether both π |ù ψ Url,us ξ and the
object ID in Sm does not change between the current timestamp and l ´ 1 as well
as until either π |ù ψ or π * ♢rl,usξ.

Note the constraints h places on l and u, where we can remove any temporal operator
with an upper bound of 0. Further, we only reason about ncm starting at time 1 since
ncm tracks whether the object has changed since the previous time step, so it is valid
for the object to have changed before we start monitoring φ. ˝

5 Realizing Unboundedness Via Dynamic Set Specification
Unrolling

Another area of concern for set-based reasoning is unboundedness. For the file require-
ment mentioned in Section 4, the set of files being monitored is, as currently stated,
unbounded. We argue that this set is never truly unbounded on a real-world system –
every system has a bound on the number of files that can be open at one time, for in-
stance, and in most cases these bounds are reasonable. To leverage these bounds, we
formalize the notion of a set that changes during system execution then encode MLTL
specifications over such “dynamic” sets.

Definition 6 (Domain-bounded Dynamic Sets). A domain-bounded dynamic set (DBDS)
is a set whose membership may change over time and has a maximum size n P N0, for
which n is derived from the application-domain in which the dynamic set is being used.

In the context of our illustrative file system example, this definition captures both that
the set of files open on a system may change over time as well as that there exists a
bound on the maximum number of files that can be open at once (either because the
bound exists in the system or the system runs out of memory, where the latter of which
likely points to a design flaw).

We can then leverage this construct to efficiently encode properties of DBDSs in
MLTL.

Definition 7 (DBDS Specifications). A DBDS Specification is an MLTL formula φ
applied to a DBDS where π models the specification if and only if π |ù φ for each
object in the DBDS and each each object in the DBDS does not leave the DBDS until
after φ is evaluated for that object for a trace π and time i.

Naturally, for a DBDS D with max size n, we introduce n slots to track the objects in
D over time. This allows us to express MLTL formulas over the set of all objects in D
at a given time.
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Definition 8 (MLTL Encoding of DBDS Specifications). Let D be a DBDS with max-
imum size n, S “ tS1, ¨ ¨ ¨ , Snu be a set of n slots such that idpdq “ idpSmq for each
d P D and some m P r1, ns, and φ be an MLTL formula. The MLTL Encoding of φ
applied to D is defined as:

ľ

iPr1,ns

hpi, φq.

To continue the file system example, if we assume that there can only be a maximum of
n files open at once and the underlying system arbitrarily places files into empty slots
as files open and removes them once they close, then we can encode the requirement
that an open file must close within t time steps as:

ľ

iPr1,ns

phpi, openÑ ♢r0,tscloseqq “
ľ

iPr1,ns

popeni Ñ pnci Ur0,ts closeiqq.

Theorem 4 (DBDS Specification Correctness). Let D be a DBDS with maximum size
n, S “ tS1, ¨ ¨ ¨ , Snu be a set of n slots such that idpdq “ idpSmq for each d P D and
some m P r1, ns, and φ be an MLTL formula, and π be a finite trace. Then π models φ
applied to D (Def. 7) if and only if π |ù

Ź

iPr1,ns hpi, φq (Def. 8).

Proof Sketch. We apply Theorem 3 over each Sm P S to show that hpm,φq accurately
monitors φ and ensures a consistent object across timestamps during evaluation of φ.
Because we assume the objects in D are correctly reflected in the set of slots S , π
models the conjunction of each hpm,φq over m P r1, ns if and only if each object
d P D satisfies φ at time i and d does not leave D until φ is evaluated. ˝

Theorem 5 (DBDS Specification Time Complexity). The evaluation of the MLTL en-
coding of a DBDS specification φ has a time complexity of Oplog2 log2maxpp, tq¨d¨nq
where p is the maximum worst-case propagation delay of all nodes in AST pφq, d is the
depth of AST pφq, t P N0 is the timestamp φ is evaluated for (i.e., the trace πt), and n
is the maximum size of the set.

Proof. We know that the time complexity for evaluating a given MLTL formula is
Oplog2 log2maxpp, tq¨dq [32]. Therefore, since the encoding has n conjunctive/disjunctive
clauses and each clause has a time complexity of Oplog2 log2maxpp, tq ¨ dq, the proof
follows. ˝

Theorem 6 (DBDS Specification Space Complexity). The MLTL encoding of a dy-
namic set specification φ has a space complexity of Opp2` rlog2ptqsq ¨ p2 ¨m ¨ pq ¨ nq
where p is the maximum worst-case propagation delay of all nodes in AST pφq, m is
the number of binary operations in the AST, t P N0 is the timestamp φ is evaluated for
(i.e., the trace πt), and n is the maximum size of the set.

Proof. We know that the space complexity for encoding an MLTL formula is Opp2 `
rlog2ptqsq ¨ p2 ¨m ¨pqq [32]. Therefore, since the encoding has n conjunctive/disjunctive
clauses and each clause has a space complexity of Opp2 ` rlog2ptqsq ¨ p2 ¨m ¨ pqq, the
proof follows. ˝
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6 Realizing Counting Via Domain-Bounded Dynamic Sets

It has been shown that LTL cannot express “counting” properties [39] e.g., that an event
must occur every n time steps and may or may not occur during any other time step.
Counting in temporal logics allow specifications to reason over buffers, queues, and FI-
FOs [35] as well as perform multi-agent planning [33]. Variants of LTL with counting
have been proposed that sacrifice decidability [31], but it has been shown that Metric
Temporal Logic on finite words is elementarily decidable with counting and interval
bounds on Until [21]. By leveraging system constraints, we can tractably encode spec-
ifications such as “No more than k tasks are active in the scheduler at once” in MLTL.

We use DBDSs to encode counting specifications of bounded systems, particularly
specifications of the form “exactly k of the elements in D satisfy φ.”

Definition 9 (Counting DBDS Specifications). A Counting DBDS Specification with
parameter k is an MLTL formula φ applied to a DBDS where π models the specification
if and only if π |ù φ for exactly k objects in the DBDS and each object in the DBDS
does not leave the DBDS until after φ is evaluated for that object in π.

These specifications can be encoded in MLTL by enumerating all
`

n
k

˘

possible ways in
which k φ-clauses hold at one time (called an enumeration clause).

Definition 10 (MLTL Encoding of Counting DBDS Specifications). LetD be a DBDS
with maximum size n, S “ tS1, ¨ ¨ ¨ , Snu be a set of n slots such that idpdq “ idpSmq
for each d P D and some m P r1, ns, φ be an MLTL formula, and PkpXq be the subset
of the powerset of X such that |P | “ k for each P P PkpXq. The MLTL Encoding of
“exactly k” φ applied to D is defined as:

ł

XPPkpr1,nsq

¨

˝

ľ

iPX

hpi, φq ^
ľ

iPr1,nszX

␣hpi, φq

˛

‚.

Theorem 7 (Counting Specification Correctness). Let D be a DBDS with maximum
size n, S “ tS1, ¨ ¨ ¨ , Snu be a set of n slots such that idpdq “ idpSmq for each d P D
and some m P r1, ns, φ be an MLTL formula, π be a finite trace, and PkpXq be the
subset of the powerset of X such that |P | “ k for each P P PkpXq. Then π models φ
applied to D with parameter k (Def. 9) if and only if

π |ù
ł

XPPkpr1,nsq

¨

˝

ľ

iPX

hpi, φq ^
ľ

iPr1,nszX

␣hpi, φq

˛

‚ (Def. 10).

Proof Sketch. The proof sketch follows a similar structure to the proof for Theorem 4:
we apply Theorem 3 over each Sm P S to show that hpm,φq accurately monitors φ and
ensures a consistent object across timestamps during evaluation of φ. Because we as-
sume the objects in D are correctly reflected in the set of slots S, π models the disjunc-
tion of enumeration clauses

Ź

iPX hpi, φq ^
Ź

iPr1,nszX ␣hpi, φq over X P Pkpr1, nsq
if and only if exactly k objects in D satisfy φ and each object does not leave D until φ
is evaluated. ˝



Encoding Intractable Specifications via Implied Domain Constraints 15

We can then further encode counting specifications of the form “at least k of the ele-
ments in D satisfy φ” using the encoding:

ł

XPPkpr1,nsqYPk`1pr1,nsqY¨¨¨YPnpr1,nsq

¨

˝

ľ

iPX

hpi, φq ^
ľ

iPr1,nszX

␣hpi, φq

˛

‚

where we enumerate all possible ways in which at least k enumeration-clauses are true
at one time. While these encodings cause a factorial blowup in the number of terms
in the MLTL formula (i.e.,

`

n
k

˘

enumeration clauses for “exactly k” specifications), the
value of

`

n
k

˘

is tractable in practice for previously published collections of real-world
MLTL specifications [7,8,16,2,25,15,4].

Theorem 8 (Counting Specification Time Complexity). The MLTL encoding of a count-
ing specificationφ has a space complexity of O

`

p2` rlog2ptqsq ¨ p2 ¨m ¨ pq ¨
`

n
k

˘˘

where
p is the maximum worst-case propagation delay of all nodes in AST pφq, m is the num-
ber of binary operations in the AST, t P N0 is the timestamp φ is evaluated for (i.e., the
trace πt), n is the maximum size of the set, and k is number of objects counted in φ.

Proof. We know that the time complexity for evaluating a given MLTL formula is
Oplog2 log2maxpp, tq ¨dq [32]. Therefore, since the encoding has

`

n
k

˘

clauses and each
clause has a time complexity of O plog2 log2maxpp, tq ¨ dq, the proof follows. ˝

Theorem 9 (Counting Specification Space Complexity). The MLTL encoding of a
counting specificationφ has a space complexity of O

`

p2` rlog2ptqsq ¨ p2 ¨m ¨ pq ¨
`

n
k

˘˘

where p is the maximum worst-case propagation delay of all nodes in AST pφq, m is
the number of binary operations in the AST, t P N0 is the timestamp φ is evaluated for
(i.e., the trace πt), n is the maximum size of the set, and k is number of objects counted
in φ.

Proof. We know that the space complexity for encoding an MLTL formula is Opp2 `
rlog2ptqsq¨p2¨m¨pqq [32]. Therefore, since the encoding has

`

n
k

˘

conjunctive/disjunctive
clauses and each clause has a space complexity of O pp2` rlog2ptqsq ¨ p2 ¨m ¨ pqq, the
proof follows. ˝

Count Operator Encoding It is worth noting that these specifications can be encoded
much more efficiently in practice by adding a count operator. We define

countpφ1, ¨ ¨ ¨ , φn, kq

to take n MLTL formulas and a natural k such that count is true if and only if exactly k
of the φi formulas for i P r1, ns are true. Then, we can encode counting specifications
in MLTL as: countphp1, φq, ¨ ¨ ¨ , hpn, φq, kq. This encoding is similar to dynamic set
specifications in that it grows linearly with the maximum size of the dynamic set, though
is not pure MLTL.
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7 Applying MLTL Rewrite Rules to DBDS Specifications

Memory encoding size is a important metric for monitoring MLTL formulas. This is
especially true for real-time, resource-constrained systems, which are natural targets
for MLTL monitoring [17]. The techniques presented in Section 5,6 place a hard bound
on the memory requirements for specifications over sets, and the rules in Section 3 re-
duce the overall memory signature of an encoded MLTL formula. These approaches are
especially powerful when used in tandem, rewriting MLTL-encoded DBDS specifica-
tions.

To illustrate, consider a request arbiter that receives requests and either grants, re-
jects, or delays them and assume that the arbiter can only ever handle a maximum of
100 requests at once. Then say we want to monitor the requirement that for each active
request R, R shall be either granted (g) or rejected (r) within 20 seconds otherwise R
will be delayed (d) within 10 seconds and be granted or rejected within 20 seconds of
being delayed. We formalize this in MLTL by introducing slots S1, ¨ ¨ ¨ , S100 such that
active requests are arbitrarily assigned an empty slot during system execution:

ľ

iPr1,100s

hpi,♢r0,20spg _ rq _ ♢r0,10spd^ ♢r0,20spg _ rqqq. (6)

According to Equation 2, encoding the MLTL formula given as an argument to h as a
monitor requires space for at least 82 verdicts. We can apply (R2) to rewrite this MLTL
formula:

ľ

iPr1,100s

hpi,♢r0,10sp♢r0,10spg _ rq _ pd^ ♢r0,20spg _ rqqqq. (7)

Evaluating this formula requires space for only 62 verdicts. If we assume a verdict size
of 33 bits (32 for the timestamp, 1 for the result), Equation 6 requires memory on the
order of p1 ` 32q ˆ 100 ˆ 82 “ 270, 600 bits (33.825 KB). Automatically applying
(R2) therefore saves memory on the order of p1`32qˆ100ˆp82´62q “ 66, 000 bits
(8.25 KB). This is a meaningful improvement for some resource-constrained systems,
which only have on the order of KBs to dedicate towards runtime monitoring [28].

A non-expert specification author is unlikely to recognize that Equation 6 is more
memory-intensive to monitor than Equation 7, so automating the application of rewrite
rules aids in such optimizations. Additionally, applying rewrite rules to DBDS specifi-
cations saves n-times the memory as compared to applying the rules to a single MLTL
formula, showing the power of pairing these two techniques in practice.

8 Impacts and Future Work

We argue that a large class of “intractable” specifications have corresponding temporal
logic patterns based off of our novel constructions. By leveraging MLTL rewriting rules
and encodings for dynamic set specifications, we enable the expression and memory
optimization of “intractable” specification patterns. Systems that feature domain con-
straints (e.g., real-time systems) can leverage these encodings to express specifications
that otherwise may have required higher-order logics.
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Further investigation into optimizations for MLTL encodings is warranted, for in-
stance, by deriving tighter bounds for the propagation delays of AST nodes. While we
presented an instance of removing vacuous sub-formulas that can tighten these bounds
(R5), generalized techniques for detecting vacuity may help tighten these bounds fur-
ther. Similarly, an algorithm for detecting the optimal ordering of rewrite rules may
reduce memory requirements further.
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13. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry data. Lec-
tures on Runtime Verification: Introductory and Advanced Topics pp. 61–102 (2018)

14. He, X., Lee, J.A.N.: Integrating predicate transition nets with first order temporal logic in
the specification and verification of concurrent systems. Form. Asp. Comput. 2(1), 226–246
(mar 1990). https://doi.org/10.1007/BF01888226, https://doi.org/10.1007/BF01888226

15. Hertz, B., Luppen, Z., Rozier, K.Y.: Integrating runtime verification into a sounding rocket
control system. In: Proceedings of the 13th NASA Formal Methods Symposium (NFM 2021)
(May 2021), available online at http://temporallogic.org/research/NFM21/

16. Kempa, B., Johannsen, C., Rozier, K.Y.: Improving Usability and Trust in Real-Time Ver-
ification of a Large-Scale Complex Safety-Critical System. Ada User Journal September
(2022)

https://doi.org/10.1007/978-3-031-06773-0_45
https://doi.org/10.1007/978-3-030-59155-7_26
https://doi.org/https://doi.org/10.2514/6.2021-0566
https://www.youtube.com/watch?v=zrtyiyNf674
https://www.youtube.com/watch?v=HFnn6TzblPg
https://doi.org/10.1007/978-3-319-02444-8_31
https://doi.org/10.1007/BF01888226
https://doi.org/10.1007/BF01888226
http://temporallogic.org/research/NFM21/


Encoding Intractable Specifications via Implied Domain Constraints 19

17. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding Online Runtime
Verification for Fault Disambiguation on Robonaut2. In: Proceedings of the 18th Interna-
tional Conference on Formal Modeling and Analysis of Timed Systems (FORMATS). pp.
196–214. Lecture Notes in Computer Science (LNCS), Springer, Vienna, Austria (Septem-
ber 2020), http://research.temporallogic.org/papers/KZJZR20.pdf

18. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding online runtime
verification for fault disambiguation on robonaut2. In: Under Submission. TBD (2021)

19. Kessler, F.B.: nuXmv 1.1.0 (2016-05-10) Release Notes. https://es-static.fbk.eu/tools/
nuxmv/downloads/NEWS.txt (2016)

20. Khoury, R., Halle, S.: Tally keeping-ltl: An ltl semantics for quantitative evaluation
of ltl specifications. In: 2018 IEEE International Conference on Information Reuse
and Integration (IRI). pp. 495–502. IEEE Computer Society, Los Alamitos, CA, USA
(jul 2018). https://doi.org/10.1109/IRI.2018.00079, https://doi.ieeecomputersociety.org/10.
1109/IRI.2018.00079

21. Krishna, S.N., Madnani, K., Pandya, P.K.: Metric temporal logic with counting. In: Jacobs,
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